Inference in hybrid Bayesian networks using dynamic discretization
نویسندگان
چکیده
We consider approximate inference in hybrid Bayesian Networks (BNs) and present a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction trees structures. Our approach offers a significant extension to Bayesian Network theory and practice by offering a flexible way of modelling continuous nodes in BNs conditioned on complex configurations of evidence and intermixed with discrete nodes as both parents and children of continuous nodes. Our algorithm is implemented in a commercial Bayesian Network software package, AgenaRisk, which allows model construction and testing to be carried out easily. The results from the empirical trials clearly show how our software can deal effectively with different type of hybrid models containing elements of expert judgement as well as statistical inference. In particular, we show how the rapid convergence of the algorithm towards zones of high probability density, make robust inference analysis possible even in situations where, due to the lack of information in both prior and data, robust sampling becomes unfeasible.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInference in Hybrid Bayesian Networks using dynamic discretisation
We consider approximate inference in hybrid Bayesian Networks (BNs) and present a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction trees structures. Our approach offers a significant extension to Bayesian Network theory and practice by offering a flexible way of modelling continuous nodes in BNs conditioned on complex config...
متن کاملA Novel Discretization for Parameter Learning in Bayesian Network using Dynamic Programming
In AI and machine learning techniques such as decision trees and Bayesian networks, there is a growing need for converting continuous data into discrete form. Several approaches are available for discretization, however finding an appropriate and efficient discretization method is a challenging task. In this paper, we present an impurity based dynamic multi-interval discretization approach for ...
متن کاملInference in hybrid Bayesian networks with mixtures of truncated exponentials
Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated with an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy-Shafer architecture for computing marginals, with no restrictions on the constr...
متن کاملApproximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials
Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization and Monte Carlo methods for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated by an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy-Shafer architecture for computing marginals, with no rest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 17 شماره
صفحات -
تاریخ انتشار 2007